Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.720
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714712

RESUMO

The knee joint has long been considered a closed system. The pathological effects of joint diseases on distant organs have not been investigated. Herein, our clinical data showed that post-traumatic joint damage, combined with joint bleeding (hemarthrosis), exhibits a worse liver function compared with healthy control. With mouse model, hemarthrosis induces both cartilage degeneration and remote liver damage. Next, we found that hemarthrosis induces the upregulation in ratio and differentiation towards Th17 cells of CD4+ T cells in peripheral blood and spleen. Deletion of CD4+ T cells reverses hemarthrosis-induced liver damage. Degeneration of cartilage matrix induced by hemarthrosis upregulates serological type II collagen (COL II), which activates CD4+ T cells. Systemic application of a COL II antibody blocks the activation. Furthermore, bulk RNAseq and single-cell qPCR analysis revealed that the cartilage Akt pathway is inhibited by blood treatment. Intra-articular application of Akt activator blocks the cartilage degeneration and thus protects against the liver impairment in mouse and pig models. Taken together, our study revealed a pathological joint-liver axis mediated by matrikine-activated CD4+ T cells, which refreshes the organ-crosstalk axis and provides a new treatment target for hemarthrosis-related disease. Intra-articular bleeding induces cartilage degradation through down-reulation of cartilage Akt pathway. During this process, the soluble COL II released from the damaged cartilage can activate peripheral CD4+ T cells, differention into Th17 cells and secretion of IL-17, which consequently induces liver impairment. Intra-articular application of sc79 (inhibitor of Akt pathway) can prevent the cartilage damage as well as its peripheral influences.


Assuntos
Linfócitos T CD4-Positivos , Fígado , Animais , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Fígado/patologia , Fígado/metabolismo , Hemartrose/genética , Hemartrose/patologia , Masculino , Modelos Animais de Doenças , Células Th17/imunologia , Células Th17/patologia , Colágeno Tipo II/genética , Venenos Elapídicos/farmacologia , Feminino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
PLoS One ; 19(5): e0302906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718039

RESUMO

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Assuntos
Cartilagem Articular , Condrócitos , Interleucina-1beta , NF-kappa B , Osteoartrite , Extratos Vegetais , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Ratos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Extratos Vegetais/farmacologia , Prunus/química , Ratos Sprague-Dawley , Regulação para Baixo/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Colágeno Tipo II/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Frutas/química , Agrecanas/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Células Cultivadas , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621925

RESUMO

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogênicas c-akt , Sêmen , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente
4.
Cell Mol Life Sci ; 81(1): 159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558087

RESUMO

Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.


Assuntos
Artrite Experimental , Animais , Camundongos , Colágeno , Colágeno Tipo II , Epitélio , Timo , Receptor EphB3/metabolismo
5.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673933

RESUMO

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Assuntos
Doença de Kashin-Bek , Osteoartrite , RNA Circular , RNA Longo não Codificante , RNA Mensageiro , Transcriptoma , Humanos , Doença de Kashin-Bek/genética , RNA Longo não Codificante/genética , Masculino , Feminino , Pessoa de Meia-Idade , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Osteoartrite/genética , Perfilação da Expressão Gênica/métodos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Idoso , Articulação do Joelho/patologia , Articulação do Joelho/metabolismo , MicroRNAs/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Biologia Computacional/métodos , Condrócitos/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Adulto
6.
Biomater Adv ; 160: 213849, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599041

RESUMO

Spheroids derived from human mesenchymal stem cells (hMSCs) are of limited use for cartilage regeneration, as the viability of the cells progressively decreases during the period required for chondrogenic differentiation (21 days). In this work, spheroids based on hMSCs and a lactose-modified chitosan (CTL) were formed by seeding cells onto an air-dried coating of CTL. The polymer coating can inhibit cell adhesion and it is simultaneously incorporated into spheroid structure. CTL-spheroids were characterized from a morphological and biological perspective, and their properties were compared with those of spheroids obtained by seeding the cells onto a non-adherent surface (agar gel). Compared to the latter, smaller and more viable spheroids form in the presence of CTL as early as 4 days of culture. At this time point, analysis of stem cells differentiation in spheroids showed a remarkable increase in collagen type-2 (COL2A1) gene expression (~700-fold compared to day 0), whereas only a 2-fold increase was observed in the control spheroids at day 21. These results were confirmed by histological and transmission electron microscopy (TEM) analyses, which showed that in CTL-spheroids an early deposition of collagen with a banding structure already occurred at day 7. Overall, these results support the use of CTL-spheroids as a novel system for cartilage regeneration, characterized by increased cell viability and differentiation capacity within a short time-frame. This will pave the way for approaches aimed at increasing the success rate of procedures and reducing the time required for tissue regeneration.


Assuntos
Diferenciação Celular , Quitosana , Condrogênese , Lactose , Células-Tronco Mesenquimais , Esferoides Celulares , Quitosana/farmacologia , Quitosana/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/citologia , Lactose/farmacologia , Lactose/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética
7.
J Transl Med ; 22(1): 305, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528553

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory reactions and tissue damage in the joints. Long-term drug use in clinical practice is often accompanied by adverse reactions. Extracorporeal photopheresis (ECP) is an immunomodulatory therapy with few side effects, offering a potential and safe therapeutic alternative for RA through the induction of immune tolerance. This study aimed to investigate the therapeutic effects of ECP on RA using a collagen-induced arthritis (CIA) murine model, as well as to explore its immunomodulatory effects in vivo. Additionally, particular attention was given to the significant role of monocytes during the ECP process. METHODS: A murine model of rheumatoid arthritis was established by administering two injections of bovine type II collagen to DBA/1J mice. ECP, ECP-MD (mononuclear cells were depleted during the ECP), MTX, and PBS treatment were applied to the CIA mice. During the treatment process, clinical scores and body weight changes of CIA mice were closely monitored. After six treatment sessions, micro-CT images of the hind paws from live mice were captured. Ankle joints and paws of the mice were collected and processed for histological evaluation. Spleen samples were collected to measure the Th17/Treg cells ratio, and serum samples were collected to assess cytokine and anti-type II collagen IgG levels. Monocytes and dendritic cells populations before and after ECP in vitro were detected by flow cytometry. RESULT: ECP therapy significantly attenuated the progression of CIA, alleviated the severity of clinical symptoms in CIA mice and effectively suppressed synovial hyperplasia, inflammation, and cartilage damage. There was an expansion in the percentage of CD3 + CD4 + CD25 + FoxP3 + Tregs and a decrease in CD3 + CD4 + IL17A + Th17 cells in vivo. Furthermore, ECP reduced the serum levels of pro-inflammatory cytokines IL-6 (53.47 ± 7.074 pg/mL vs 5.142 ± 1.779 pg/mL, P < 0.05) and IL-17A (3.077 ± 0.401 pg/mL vs 0.238 ± 0.082 pg/mlL, P < 0.0001) compared with PBS. Interestingly, the depletion of monocytes during the ECP process did not lead to any improvement in clinical symptoms or histological scores in CIA mice. Moreover, the imbalance in the Th17/Treg cells ratio became even more pronounced, accompanied by an augmented secretion of pro-inflammatory cytokines IL-6 and IL-17A. In vitro, compared with cells without ECP treatment, the proportion of CD11b + cells were significantly reduced (P < 0.01), the proportion of CD11c + cells were significantly elevated (P < 0.001) 24 h after ECP treatment. Additionally, the expression of MHC II (P < 0.0001), CD80 (P < 0.01), and CD86 (P < 0.001) was downregulated in CD11c + cells 24 h after ECP treatment. CONCLUSION: Our study demonstrates that ECP exhibits a therapeutic effect comparable to conventional therapy in CIA mice, and the protective mechanisms of ECP against RA involve Th17/Treg cells ratio, which result in decreased IL-6 and IL-17A. Notably, monocytes derived from CIA mice are an indispensable part to the efficacy of ECP treatment, and the proportion of monocytes decreased and the proportion of tolerogenic dendritic cells increased after ECP treatment in vitro.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fotoferese , Camundongos , Animais , Bovinos , Interleucina-17/metabolismo , Modelos Animais de Doenças , Interleucina-6 , Camundongos Endogâmicos DBA , Artrite Reumatoide/tratamento farmacológico , Inflamação , Citocinas/metabolismo , Artrite Experimental/terapia , Colágeno Tipo II , Linfócitos T Reguladores , Células Th17
8.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 217-226, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430019

RESUMO

Osteoarthritis is a prevalent chronic disease. One of its primary pathological processes involves the degeneration of articular cartilage. Platelet-rich plasma (PRP) contains cytokines and growth factors that can stimulate the repair and regeneration of articular cartilage tissues. PRP may also slow the progression of osteoarthritis. The purpose of this experiment is to compare the efficacy of Leukocyte poor (LP) - PRP and Leukocyte rich (LR) - PRP in treating rabbit osteoarthritis and to investigate their mechanisms of action. Analyzing the impact of leukocytes on PRP therapeutic effectiveness will provide a valuable clinical reference for the choice of which PRP is better for the treatment of osteoarthritis. A rabbit osteoarthritis model was established by injecting papain into the knee joint cavity, and LP-PRP and LR-PRP were prepared through different centrifugation methods for injection into the knee joint cavity. Eight weeks after injection, rabbit knee cartilage specimens were observed for gross changes, HE staining, senna O-solid green staining, and immunohistochemistry of type II collagen and were quantitatively compared using Pelletier's score, Mankin's pathology score, and ImageJ image processing software. Injection of papain into the knee joint cavity successfully established a rabbit model of osteoarthritis. All three evaluation indexes differed significantly from those of the blank group (P<0.05). LP-PRP and LR-PRP exhibited therapeutic effects when compared with the model group. The two PRP groups had similar gross tissue appearance and pathology (P>0.05). The LR-PRP group had higher collagen type-II expression (P < 0.05) than the LP-PRP group. Both LP-PRP and LR-PRP proved therapeutic for the rabbit papain osteoarthritis model. The difference in leukocyte content between the two groups did not yield different cartilage morphology or other factors by 8 weeks posttreatment. LR-PRP displayed the ability to release more factors relevant to the metabolism of type II collagen than LP-PRP, enabling the preservation of into cartilage collagen content of type II collagen and delaying osteoarthritis progression.


Assuntos
Cartilagem Articular , Osteoartrite , Plasma Rico em Plaquetas , Animais , Coelhos , Colágeno Tipo II/metabolismo , Papaína/uso terapêutico , Papaína/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Leucócitos/metabolismo
9.
Immunogenetics ; 76(3): 145-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451352

RESUMO

Syndecan-1 (Sdc-1), a transmembrane heparan sulfate protein, is implicated in several pathophysiological processes including rheumatoid arthritis (RA). The exact role of Syndican-1 in this autoimmune disease is still undetermined. This study explores the involvement level of Sdc-1 in the development of RA in a collagen II-induced arthritis mice model. RA was induced in two mice strains (wild-type BALB/c group and Sdc-1 knockout) by collagen II. Mice underwent regular clinical observations and scoring. After sacrifice, leg biopsies were taken from mice for histological examination, using a variety of stains. In addition, proteins were extracted, and molecular assessment of TNF-α was performed using the western blot technique. In the Sdc-1 knockout group, clinical scoring results showed a significantly more severe experimental RA; histology showed a significant increase in bone erosion, cartilage destruction, inflammation, and less granulated mast cells than the wild-type. In addition, molecular assessment of TNF-α showed more increase in expression in the Sdc-1 knockout models compared to the wild-type. Data suggest that lack of Sdc-1 enhances the inflammatory characteristics in RA. However, more molecular studies and investigations are needed to determine its exact role and possible mechanisms involved.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos Knockout , Sindecana-1 , Fator de Necrose Tumoral alfa , Animais , Sindecana-1/genética , Sindecana-1/metabolismo , Camundongos , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Artrite Experimental/genética , Artrite Experimental/patologia , Artrite Experimental/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Colágeno Tipo II/genética , Masculino
10.
J Bone Miner Res ; 39(4): 498-512, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477756

RESUMO

Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.


Patients with CHARGE syndrome exhibit skeletal defects. CHARGE syndrome is primarily caused by mutations in the chromatin remodeler-coding gene CHD7. To investigate the poorly characterized role of CHD7 in cartilage and bone development, here, we examine the craniofacial and bone anomalies in a zebrafish chd7-/- mutant model. We find that zebrafish mutant larvae exhibit striking dysmorphism of craniofacial structures and spinal deformities. Notably, we find a significant reduction in osteoblast, chondrocyte, and collagen matrix markers. This work provides important insights to improve our understanding of the role of chd7 in skeletal development.


Assuntos
Cartilagem , DNA Helicases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Cartilagem/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patologia , Crânio/metabolismo , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética
11.
Fitoterapia ; 174: 105870, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423225

RESUMO

A systematic mechanistic review was performed to determine mechanistic evidence for curcumin on pro-inflammatory matrix metalloproteinases and Osteoarthritis to understand the underlying pathophysiology, and to evaluate available human intervention evidence to inform clinical decision making. The systematic literature search was performed in 3 tranches (reviews, mechanistic, intervention studies) using PubMed, with no date limitations and using specific search terms. 65 out of 393 screened papers were accepted based on detailed inclusion and exclusion criteria. The mechanistic search was divided into three searches and the intervention searches were subdivided into four searches. Curcumin demonstrated significant inhibition of matrix metalloproteinases linked to cartilage degradation in Osteoarthritis through reduced activation of the nuclear factor kappa-B signaling pathway via suppressing phosphorylation of Iκßa and p65 nuclear translocation. Mechanistic evidence implicated matrix metalloproteinases in Osteoarthritis by decreasing Type II collagen, leading to cartilage damage. As a potential nutritional intervention for Osteoarthritis, curcumin could reduce inflammatory markers and improve pain and function scores. The evidence indicates most formulations of turmeric extract and curcumin extract, bio-enhanced and non-bio-enhanced, are effective at improving inflammatory markers and pain and function to a greater or lesser extent. Due to the high heterogeneity of the formulations, dosage, and duration of the studies, further research is needed to fully understand curcumin's potential as a promising non-pharmaceutical intervention for Osteoarthritis. This mechanism review identifies a gap in current research for the mechanism by which Type II collagen is mediated.


Assuntos
Curcumina , Osteoartrite , Humanos , Curcumina/farmacologia , Curcumina/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacologia , Condrócitos/metabolismo , Estrutura Molecular , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Dor , Metaloproteinases da Matriz/metabolismo
12.
Am J Sports Med ; 52(4): 1075-1087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419462

RESUMO

BACKGROUND: Bioengineered cartilage is a developing therapeutic to repair cartilage defects. The matrix must be rich in collagen type II and aggrecan and mechanically competent, withstanding compressive and shearing loads. Biomechanical properties in native articular cartilage depend on the zonal architecture consisting of 3 zones: superficial, middle, and deep. The superficial zone chondrocytes produce lubricating proteoglycan-4, whereas the deep zone chondrocytes produce collagen type X, which allows for integration into the subchondral bone. Zonal and chondrogenic expression is lost after cell number expansion. Current cell-based therapies have limited capacity to regenerate the zonal structure of native cartilage. HYPOTHESIS: Both passaged superficial and deep zone chondrocytes at high density can form bioengineered cartilage that is rich in collagen type II and aggrecan; however, only passaged superficial zone-derived chondrocytes will express superficial zone-specific proteoglycan-4, and only passaged deep zone-derived chondrocytes will express deep zone-specific collagen type X. STUDY DESIGN: Controlled laboratory study. METHODS: Superficial and deep zone chondrocytes were isolated from bovine joints, and zonal subpopulations were separately expanded in 2-dimensional culture. At passage 2, superficial and deep zone chondrocytes were seeded, separately, in scaffold-free 3-dimensional culture within agarose wells and cultured in redifferentiation media. RESULTS: Monolayer expansion resulted in loss of expression for proteoglycan-4 and collagen type X in passaged superficial and deep zone chondrocytes, respectively. By passage 2, superficial and deep zone chondrocytes had similar expression for dedifferentiated molecules collagen type I and tenascin C. Redifferentiation of both superficial and deep zone chondrocytes led to the expression of collagen type II and aggrecan in both passaged chondrocyte populations. However, only redifferentiated deep zone chondrocytes expressed collagen type X, and only redifferentiated superficial zone chondrocytes expressed and secreted proteoglycan-4. Additionally, redifferentiated deep zone chondrocytes produced a thicker and more robust tissue compared with superficial zone chondrocytes. CONCLUSION: The recapitulation of the primary phenotype from passaged zonal chondrocytes introduces a novel method of functional bioengineering of cartilage that resembles the zone-specific biological properties of native cartilage. CLINICAL RELEVANCE: The recapitulation of the primary phenotype in zonal chondrocytes could be a possible method to tailor bioengineered cartilage to have zone-specific expression.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Animais , Bovinos , Condrócitos/metabolismo , Agrecanas/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Diferenciação Celular , Células Cultivadas , Engenharia Tecidual/métodos
13.
PLoS One ; 19(2): e0299351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421984

RESUMO

Osteoarthritis (OA) is a chronic degenerative disease that primarily includes articular cartilage destruction and inflammatory reactions, and effective treatments for this disease are still lacking. The present study aimed to explore the protective effects of ectoine, a compatible solute found in nature, on chondrocytes in rats and its possible application in OA treatment. In the in vitro studies, the morphology of the chondrocytes after trypsin digestion for 2 min and the viability of the chondrocytes at 50°C were observed after ectoine treatment. The reactive oxygen species (ROS) levels in chondrocytes pretreated with ectoine and post-stimulated with H2O2 were detected using an ROS assay. Chondrocytes were pretreated with ectoine before IL-1ß stimulation. RT‒qPCR was used to measure the mRNA levels of cyclooxygenase-2 (COX-2), metallomatrix proteinase-3, -9 (MMP-3, -9), and collagen type II alpha 1 (Col2A1). In addition, immunofluorescence was used to assess the expression of type II collagen. The in vivo effect of ectoine was evaluated in a rat OA model induced by the modified Hulth method. The findings revealed that ectoine significantly increased the trypsin tolerance of chondrocytes, maintained the viability of the chondrocytes at 50°C, and improved their resistance to oxidation. Compared with IL-1ß treatment alone, ectoine pretreatment significantly reduced COX-2, MMP-3, and MMP-9 expression and maintained type II collagen synthesis in chondrocytes. In vivo, the cartilage of ectoine-treated rats exhibited less degeneration and lower Osteoarthritis Research Society International (OARSI) scores. The results of this study suggest that ectoine exerts protective effects on chondrocytes and cartilage and can, therefore, be used as a potential therapeutic agent in the treatment of OA.


Assuntos
Diamino Aminoácidos , Cartilagem Articular , Osteoartrite , Animais , Ratos , Condrócitos , Metaloproteinase 3 da Matriz , Colágeno Tipo II , Ciclo-Oxigenase 2/genética , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Tripsina , Osteoartrite/tratamento farmacológico , Interleucina-1beta
14.
J Physiol Biochem ; 80(2): 337-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336929

RESUMO

Inositol-requiring enzyme-1 (IRE1) is the master regulator of the unfolded protein response pathway, associated with the endoplasmic reticulum (ER) in sensing and regulating cell stress. The activity of IRE1 is highly explored and well-characterized in cancer and other cells. However, the IRE1 molecular mechanism in chondrocytes is poorly understood. The present study explored the effect of IRE1 on chondrocytes regarding its chondrogenic gene expression and its correlation with different cellular pathways and cell behavior. Chondrocytes transfected with the cDNA of IRE1 reduced the expression of type II collagen, disrupting chondrocyte differentiation as confirmed by western blotting and immunofluorescence. Upon siRNA treatment, the influence of IRE1 on chondrocyte differentiation is restored by reviving the normal expression of type II collagen. Different molecular pathways were explored to investigate the role of IRE1 in causing chondrocyte dedifferentiation. However, we found no significant correlation, as IRE1 induces dedifferentiation through independent pathways. In response to various endoplasmic reticulum (ER) agonists (2-deoxy-D-glucose), and ER stress antagonists (tauroursodeoxycholic acid and salubrinal), IRE1 overexpression did not affect GRP78/94, as implicated in the pathogenesis of ER stress. Moreover, when IRE1 overexpression was correlated with the inflammation pathway, nuclear factor-kappa B (NFκB), IRE1 substantially increased the expression of p50 while decreasing the expression of nuclear factor kappa light polypeptide alpha (IκBα). These results suggest that IRE1 induces dedifferentiation in chondrocytes by modulating inflammatory pathways that cause dedifferentiation by disrupting type II collagen expression.


Assuntos
Desdiferenciação Celular , Condrócitos , Colágeno Tipo II , Estresse do Retículo Endoplasmático , Endorribonucleases , Complexos Multienzimáticos , NF-kappa B , Proteínas Serina-Treonina Quinases , Tioureia/análogos & derivados , Condrócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , NF-kappa B/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Cinamatos/farmacologia , Tioureia/farmacologia , Células Cultivadas , Transdução de Sinais , Chaperona BiP do Retículo Endoplasmático
15.
Toxicol Lett ; 393: 14-23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211732

RESUMO

Prednisone is frequently used to treat rheumatoid diseases in pregnant women because of its high degree of safety. Whether prenatal prednisone exposure (PPE) negatively impacts fetal articular cartilage development is unclear. In this study, we simulated a clinical prednisone treatment regimen to examine the effects of different timings and doses of PPE on cartilage development in female and male fetal mice. Prednisone doses (0.25, 0.5, and 1 mg/kg/d) was administered to Kunming mice at different gestational stages (0-9 gestational days, GD0-9), mid-late gestation (GD10-18), or during the entire gestation (GD0-18) by oral gavage. The amount of matrix aggrecan (ACAN) and collagen type II a1(COL2a1), and expression of transforming growth factor ß1 (TGFß1) signaling pathway also demonstrated that the chondrocyte count and ACAN and COL2a1 expression reduced in fetal mice with early and mid-late PPE, with the reduction being more significant in the mice with early PPE than that in those with PPE at other stages. Prenatal exposure to different prednisone doses prevented the reduction of TGFß signaling pathway-related genes [TGFßR1, SMAD family member 3 (Smad3), SRY-box9 (SOX9)] as well as ACAN and COL2a1 mRNA expression levels in fetal mouse cartilage, with the most significant decrease after 1 mg/kg·d PPE. In conclusion, PPE can inhibit/restrain fetal cartilage development, with the greatest effect at higher clinical dose (1 mg/kg·d) and early stage of pregnancy (GD0-9), and the mechanism may be related to TGFß signaling pathway inhibition. The result of this study provide a theoretical and experimental foundation for the rational clinical use of prednisone.


Assuntos
Cartilagem Articular , Humanos , Camundongos , Feminino , Masculino , Gravidez , Animais , Prednisona/toxicidade , Prednisona/metabolismo , Agrecanas/metabolismo , Feto/metabolismo , Condrócitos , Fator de Crescimento Transformador beta/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/toxicidade , Colágeno Tipo II/metabolismo
16.
Adv Healthc Mater ; 13(10): e2302833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185787

RESUMO

Osteoarthritis (OA) is a highly prevalent and intricate degenerative joint disease affecting an estimated 500 million individuals worldwide. Collagen-based hydrogels have sparked immense interest in cartilage tissue engineering, but substantial challenges persist in developing biocompatible and robust crosslinking strategies, as well as improving their effectiveness against the multifaceted nature of OA. Herein, a novel discovery wherein the simple incorporation of ferrous/ferric ions enables efficient dynamic crosslinking of type II collagen, leading to the development of injectable, self-healing hydrogels with 3D interconnected porous nanostructures, is unveiled. The ferrous/ferric ions crosslinked type II collagen hydrogels demonstrate exceptional physical properties, such as significantly enhanced mechanical strength, minimal swelling ratios, and remarkable resistance to degradation, while also exhibiting extraordinary biocompatibility and bioactivity, effectively promoting cell proliferation, adhesion, and chondrogenic differentiation. Additionally, the hydrogels reveal potent anti-inflammatory effects by upregulating anti-inflammatory cytokines while downregulating pro-inflammatory cytokines. In a rat model of cartilage defects, these hydrogels exhibit impressive efficacy, substantially accelerating cartilage tissue regeneration through enhanced collagen deposition and increased proteoglycan secretion. The innovative discovery of the multifunctional role of ferrous/ferric ions in endowing type II collagen hydrogels with a myriad of beneficial properties presents exciting prospects for developing advanced biomaterials with potential applications in OA.


Assuntos
Hidrogéis , Osteoartrite , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Colágeno Tipo II , Colágeno/química , Engenharia Tecidual , Anti-Inflamatórios , Citocinas , Osteoartrite/tratamento farmacológico , Íons
17.
Bone ; 181: 117013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246255

RESUMO

Pathogenic single nucleotide variants (SNVs) found in the COL2A1 gene are associated with a broad range of skeletal dysplasias due to their impact on the structure and function of the Col2a1 protein. However, the molecular mechanisms of some nucleotide variants detected during diagnostic testing remain unclear. The interpretation of missense and splicing variants caused by SNVs poses a significant challenge for clinicians. In this work, we analyzed 22 splicing variants in the COL2A1 gene which have been found in patients with COL2A1-associated skeletal dysplasias. Using a minigene system, we investigated the impact of these SNVs on splicing and gained insights into their molecular mechanisms and genotype-phenotype correlations for each patient. The results of our study are very useful for improving the accuracy of diagnosis and the management of patients with skeletal dysplasias caused by SNVs in the COL2A1 gene.


Assuntos
Nucleotídeos , Humanos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fenótipo , Mutação
18.
Int J Biol Macromol ; 260(Pt 2): 129564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246438

RESUMO

In this study, the structural design and physicochemical property enhancement of undenatured type II collagen (UC-II) nanofibrils with sodium alginate (SA) coating induced by calcium ions (Ca2+) were investigated. The research aimed to elucidate the impact of Ca2+ concentration on the morphology, thermal stability, and digestive resistance, as well as to assess the potential of UC-II/SA nanofibrils as a delivery system for curcumin (Cur). A series of Ca2+ concentrations (1-9 mM) were methodically applied to optimize the condition that maintains the triple-helical structure of UC-II, thereby enhancing its functional properties. It was found that the Ca2+ level up to 5 mM effectively preserved the structural integrity and improved thermal stability of UC-II, with the added benefit of ensuring the substantial delivery of active fragment to small intestine (70.7 %), which was 3.43 times greater than that of uncoated UC-II. Moreover, incorporating Cur into the UC-II/SA nanofibrils resulted in a 300 times increase in Cur solubility and showcased the superior dispersion stability, antioxidant activity, and sustained release profile during simulated digestion. These findings underscored the dual functionality of the UC-II/SA system as both a stabilizing agent for UC-II nanofibrils and an efficient carrier for Cur delivery.


Assuntos
Curcumina , Curcumina/química , Colágeno Tipo II , Alginatos/química , Solubilidade , Antioxidantes/farmacologia , Antioxidantes/química
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 114-120, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284252

RESUMO

Objective To investigate the impact of imidazole ketone erastin (IKE), a ferroptosis inducer, on pulmonary fibrosis progression in mice with collagen-induced arthritis (CIA), and to understand its potential mechanism. Methods Chick type II collagen emulsified in complete Freund's adjuvant (CFA) was injected into DBA/1 mice, aged 8 to 10 weeks, to induce CIA. Fourteen days later, type II collagen emulsified in incomplete Freund's adjuvant (IFA) was administered to the mice. The mice were randomly divided into a control group, a CIA group and a CIA combined IKE group. The development of arthritis was monitored by evaluating the arthritis scores every two days until day 39 and then the mice were sacrificed for organ collection. The histopathological changes of joints were evaluated by HE staining, Safranin O-fast green staining and toluidine blue staining. The histopathological changes of organs including heart, liver, spleen, lung, and kidney were evaluated by HE staining, and Masson's trichrome staining was used to assess pulmonary fibrosis. The expression levels of smooth muscle actin α (α-SMA), fibroblast activating protein α (FAPα), transforming growth factor ß (TGF-ß), type I collagen (Col1), interleukin 1(IL-1), IL-6, IL-17 and tumor necrosis factor α (TNF-α) were detected by immunohistochemical staining. The expression levels of serum cytokines including IL-17α, IL-17F, TGF-ß1, ITG-ß6, TNF receptor superfamily menber 11B(TNFRSF11B), TNFRSF12A, IL-6, IL-1α, IL-1ß, IL-10, TNF-α, CCL5, CCL2, CXCL9, CXCL1, NADK, EPO, CSF2, TGF-α, CCL20 and CCL3 in serum were detected by Olink mouse exploratory panel. Results Histological staining in the CIA mice administered with IKE model demonstrated that IKE treatment reduced bone absorption and the degree of synovial inflammation when active inflammation was present. CIA mice administered with IKE showed lower expression levels of α-SMA, FAPα, TGF-ß, Col1, IL-1, IL-6, IL-17 and TNF-α, according to the immunohistochemical staining of the lung. In addition, the expression levels of CCL5, CXCL9 and IL-6 were also decreased in serum of CIA mice treated with IKE. Conclusion IKE not only ameliorates joint inflammation and bone damage, but also alleviates the inflammation and the progression of pulmonary fibrosis in CIA mice.


Assuntos
Artrite Experimental , Ferroptose , Imidazóis , Cetonas , Piperazinas , Fibrose Pulmonar , Animais , Camundongos , Colágeno Tipo II , Inflamação , Interleucina-17 , Interleucina-1beta , Interleucina-6/genética , Fibrose Pulmonar/induzido quimicamente , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...